

Analog - Digitale Mikromechanische Sensorsysteme

Allgemeine Beschreibung

Der Drucksensor der Baureihe AMS5001 vereint eine mikroelektromechanische Siliziummeßzelle (MEMS) und ein eigens für das System entwickeltes Auswerte- und Verstärker-IC zu einem kalibrierten, temperaturkompensierten Sensor. Das IC und die Meßzelle sind auf einem Dickschichtsubstrat montiert. Da die Druckbeaufschlagung auf der Rückseite der Siliziummeßzelle stattfindet, können auch Drücke in verschmutzten Medien gemessen werden.

Der AMS5001 ist als kostengünstiges OEM-Produkt, betriebsbereit und einbaufertig, und wird ab Werk mit einem 0,5...4,5V- bzw. 1,0...4,0V-Spannungs-ausgang geliefert. Die Kompensation und Kalibration wird mit einem Widerstandsnetzwerk aus Dickschichtwiderständen realisiert, die individuell für jedes System eingestellt werden.

Der Sensor AMS5001 ist im Druckbereich 10bar (0,5...4,5V) und 12bar (1,0...4,0V) relativ erhältlich. Die Versorgungsspannung ist ratiometrisch und beträgt $5V \pm 5\%$. Der Sensor eignet sich deshalb besonders für Anwendungen im Automobilbereich oder in Verbindung mit einem nachfolgenden Mikroprozessor.

Eigenschaften

- kalibrierter und kompensierter Spannungsausgang: 0,5...4,5V oder 1,0...4,0V
- Genauigkeit zwischen 0 und 60°C: ±1,5 %FSO
- ratiometrische Versorgung: 5V ± 5%
- Diagnosefunktionen (optional)
- Bandbegrenzung und Filter
- praktische Bauform, ideal geeignet für OEM-Anwendungen

<u>Anwendungen</u>

- Anwendungen im Automobilbereich (z.B. pneumatische Systeme)
- Anwendungen mit Mikrokontroller

AMSYS GmbH & Co. KG An der Fahrt 13 55124 Mainz

Tel.: +49 (0)6131-469875 - 0 Fax: +49 (0)6131-469875 - 66 Internet: www.amsys.de E-Mail: info@amsys.de

Seite 1/5 Rev. 1.2 März 2002

Analog - Digitale Mikromechanische Sensorsysteme

Spezifikationen

Alle Parameter gelten für eine Versorgungsspannung von V_s = 5V bei Raumtemperatur T = 25°C und einem Lastwiderstand von R_L > 2,2k Ω , sofern nicht anders angegeben.

Parameter	Bedingung	Minimum	Typisch	Maximum	Einheit
Versorgungsspannung V _S					
ratiometrischer Bereich	VS gegen GND	4,75	5,00	5,25	V
maximale Spannung $V_{ m Smax}$	VS gegen GND			6,0	V
Eigenstromaufnahme	P = 0bar		5	15	mA
Ausgangssignal V _{OUT} 1)					
10bar-Variante		0,5		4,5	V
12bar-Variante		1,0		4,0	V
Ausgangsstrom I _{OUT}		0		5	mA
Lastabhängigkeit von V _{OUT}	Änderung R_L : 1,0 kΩ auf 2,2 kΩ	-10		10	mV
Rauschspannung	P = 010bar			5	mV
Diagnosefunktion V _{DIAG} 2)					
	$\Delta V_{OUT} = 0$ mV, $P = 0$ bar	0		0,8	V
	ΔV_{OUT} = 200mV ± 5%, P = 0bar	2,0		5,0	V
Betriebsbereitschaft T _{START}	nach Anlegen von V_S , $P = 0$ bar		10		ms
Bandbegrenzung Anstiegszeit T_S	$\Delta p = P \text{ (Enddruck)}$	394		481	μs
Nenndruck	relativ	010 / 012		bar	
zulässiger Betriebsüberdruck				16	bar
Berstdruck				30	bar
Gesamtfehler 3):					
im Bereich 060°C				±1,5	%FSO ⁴⁾
im Bereich > 60100°C				±3,0	%FSO
im Bereich –40< 0°C				±3,0	%FSO
Linearitätsfehler 5)			±0,10	±0,15	%FSO
Druckhysterese			±0,10	±0,20	%FSO
Arbeitstemperatur		-40		100	°C
Lagertemperatur		-40		120	°C
Medienverträglichkeit 6)					
Gewicht			25		g

- 1) Das Ausgangssignal V_{OUT} verhält sich ratiometrisch zur Versorgungsspannung V_S . D.h., wenn sich V_S um 5% ändert, ändert sich auch V_{OUT} um 5%.
- 2) nur Version AMS5001-L
- 3) inklusive Nullpunktfehler, Spannenfehler, Nichtlinearität bezüglich des Druckes sowie Druck- und Temperaturhysterese
- 4) Full Span Output (FSO) ist die nominelle Signalspanne am Ausgang, definiert als FSO = FS Offset, wobei Full Scale (FS) die Ausgangsspannung bei nominellem Maximaldruck bezeichnet, Offset die Ausgangsspannung ohne Druckbeaufschlagung
- 5) definiert als Abweichung der Best Fit Straight Line-Geraden (BFSL).
- 6) Die Medienbeständigkeit läßt sich je nach Druckanschluß unterteilen in:
 - Arbeitsmedium Druckanschluß: Luft (wasser- und salzhaltig), Ruß von verbrannten Kompressoröl (schwefelhaltige Kohlenwasserstoffe), Motorenöl- und Schmiermittelrückstände (ppm Bereich), Frostschutzmittel (Ethanol u.Ä.), Kunststoffweichmacher
 - ⇒ Arbeitsmedium Referenzanschluß: atmosphärische Luft, relative Luftfeuchtigkeit 85%, Betauung nicht zulässig

Analog - Digitale Mikromechanische Sensorsysteme

Funktionsbeschreibung

Das Sensorgesamtsystem AMS5001 besteht aus drei Teilsystemen; aus der Siliziumdruckmeßzelle, aus dem Signalverarbeitungs-ASIC (anwendungsspezifische integrierte Schaltung) und einem Dickschichtsubstrat (Hybrid). Es mißt den Differenzdruck zwischen einem Druck P_1 (rückseitig zugeführter Überdruck) gegenüber dem atmosphärischem Umgebungsdruck P_2 (Relativdruckmessung) und wandelt das Drucksignal in ein proportionales elektrisches Signal um. Die Siliziummeßzelle ist ein mikromechanischer Druckaufnehmer, der durch seine piezoresistiven Widerstände (Weathstone-Brücke) die druckabhängige Deformation der Membran in ein äquivalentes elektrisches Signal umsetzt.

Um den Relativdruck möglichst identisch wiederzugeben und an die nachfolgende Elektronik anzupassen, wird das Ausgangssignal der Siliziummeßzelle verstärkt, kalibriert und temperaturkompensiert. Die ratiometrische Signalverarbeitung erfolgt in dem integrierten ASIC. Die Diagnoseeinheit des ASICs erlaubt jederzeit eine Funktionsprüfung des Drucksensorhybrids (Version AMS5001-L), indem nach Anlegen eines TTL-Pegels am *DIAG*-Anschluß eine Erhöhung des Ausgangssignals um 200mV erfolgt. Getestet wird hierbei, ob der Druckaufnehmer noch korrekt angeschlossen ist. Im Signalpfad befindet sich ein Tiefpaß 2. Ordnung mit einer Grenzfrequenz von 800Hz. Der AMS5001 ist somit ein einbaufertiger Druckaufnehmer für ratiometrische Anwendungen, das durch modernes IC-Design weitgehend EMV-geschützt ist (EMV-Details auf Anfrage).

Abmessungen und Anschlußbelegung

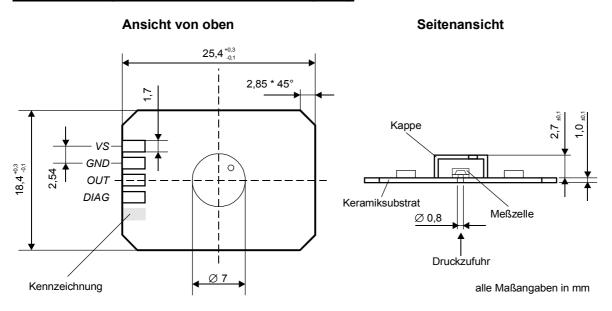


Abbildung 1: Sensorhybrid von oben gesehen und in der Seitenansicht

Pinout

Pin	Name	Bedeutung	
1	VS	Versorgungsspannung	
2	GND	Masse	
3	OUT	Spannungsausgang	
4	DIAG	Diagnose	

Analog - Digitale Mikromechanische Sensorsysteme

Einbau- und Verwendungshinweise

Folgende Hinweise sollten bei der Verwendung bzw. dem Einbau der Sensoren der AMS5001-Reihe beachtet werden:

- Die Montage sollte möglichst streßfrei geschehen, damit die Keramikplatte des Sensors nicht permanent unter Spannung steht.
- Die Anbindung an die zu messenden Druckmedien sollte in mechanischer Hinsicht streßfrei geschehen, d.h. permanente Kräfte auf die Hybridkeramik sind zu vermeiden.
- Als Kleb-Dichtstoff wird ein temperaturaushärtender Silikonkleber empfohlen.

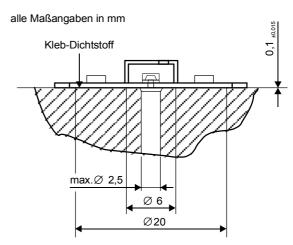
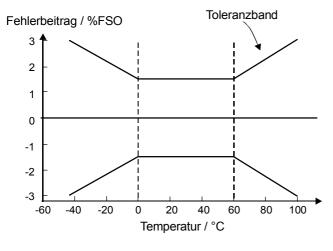
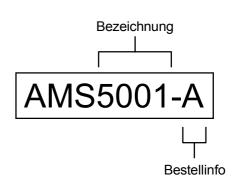



Abbildung 2: Einbauvorschrift

Fehlerband

Temperaturfehler

max. Gesamtfehler (0...60°C): ± 1,5%FSO


max. Gesamtfehler

(-40...0°C bzw. 60...100°C): ± 3,0%FSO

Abbildung 3: Temperaturfehler des Drucksensorhybrids AMS5001

Bestellinformationen

Bestellinfo	Druck	Ausgang	Diagnose
А	10bar	0,54,5V	nein
L	10bar	0,54,5V	ja
С	12bar	1,04,0V	nein

Analog - Digitale Mikromechanische Sensorsysteme

Kontaktadresse

Für weitergehende Fragen setzen Sie sich bitte mit uns in Verbindung:

 AMSYS GmbH & Co. KG
 Telefon:
 06131/469875 – 0

 An der Fahrt 13
 Telefax:
 06131/469875 – 66

 D – 55124 Mainz
 E-Mail:
 info@amsys.de

Internet: http://www.amsys.de

Notizen